Ozonolysis of Uracils in Water

Masaki MATSUI,* Hiroyuki NAKAZUMI, * Kazusaki KAMIYA,
Chizuko YATOME, Katsuyoshi SHIBATA, and Hiroshige MURAMATSU
Department of Chemistry, Faculty of Engineering,
Gifu University, Yanagido, Gifu 501-11
+ Department of Applied Chemistry, College of Engineering,
University of Osaka Prefecture, Sakai, Osaka 591

The ozonolysis of uracils unsubstituted at the 1-position gave new 1-acyl-5-hydroxyhydantoins and 5-hydroxyhydantoins in water, while that of 1-substituted uracils gave the corresponding 5-hydroxyhydantoins in low yields. The structure of 1-acetyl-5-hydroxy-5-methylhydantoin was determined by X-ray crystallography.

The study on the ozonization reaction of cellular substances is one of the most important subjects in ozone chemistry. Though the reaction of DNA and RNA with ozone (0_3) is of interest in connection with the damage of biological systems, the reaction has received only limited attention. With pyrimidine nucleotides, 0_3 preferentially attacks the base moieties. This report clarifies the reaction of uracils with 0_3 .

In a general procedure, uracil $(\underline{1a})$ (2 mmol) was ozonized with an 0_3 - 0_2 mixture (0_3 : 0.22 mmol min⁻¹, 0_2 : 200 ml min⁻¹) in water (100 ml) at 37 °C. After the reaction, the products were chromatographed on preparative TLC ($\mathrm{Si0}_2$, EtOAc: Me₂CHOH:H₂O=75:16:9). In all cases, the unidentified products were detected on

the original spot in TLC. The products, 1-acyl-5-hydroxyhydantoins, gave pertinent spectral data with the structures. $^{4,5)}$ In order to determine the structure of new 1-acyl-5-hydroxy-hydantoins definitely, X-ray crystallography of 1-acetyl-5-hydroxy-5-methyl-hydantoin (2d) recrystallized from EtOAc was carried out. The result is shown in Fig. 1. The reactions of uracils with 0_3 are summarized in Table 1. The reaction of uracil (1a) in water gave 1-formyl-5-hydroxyhydantoin (1a) in water 1a0 and 1a1 by yields, respectively. While that of 1a1

Time Yield / %a) Run Substrate Substituent R^1 R^2 R^3 R^4 min 2 3 1 <u>l a</u> Н 120 32 31 20^{b)} 2 <u>la</u> 29 3 16 90 23 27 4 <u>lc</u> 120 18 5 <u>ld</u> H Me Me 120 26 <u>le</u> 120 44 14^{c)} <u>lf</u> 120 21^{d)} <u>1 g</u> Me Me H H 120

Table 1. Reaction of Uracils with Ozone

a) determined by HPLC (SS-10, Et0Ac: $\text{Me}_2\text{CHOH:H}_2\text{=}75\text{:}16\text{:}9. \text{ b) in AcOH. c)} \; \underline{\text{N}}\text{-Methyl-parabanic acid was also obtained in a 3% yield.}$ d) $\underline{\text{N}},\underline{\text{N}}\text{-Dimethylparabanic acid was also obtained in a 21% yield.}$

in acetic acid preferentially gave $\underline{2a}$ in a 29% yield. The reaction of uracils $\underline{1b-e}$ also gave both the corresponding 1-acyl-5-hydroxyhydantoins $\underline{2}$ and 5-hydroxyhydantoins $\underline{3}$. With 1-methyluracils $\underline{1f,g}$, the reaction gave 5-hydroxhydantoins $\underline{3f,g}$ in low yields accompanied by the formation of parabanic acids. A mechanism is proposed in Scheme 1.

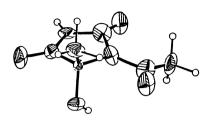
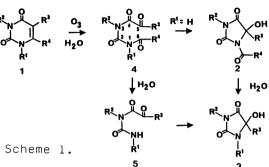



Fig. 1. ORTEP view of 2d.

References

724

- 1) T. B. Johnson and R. B. Flint, J. Am. Chem. Soc., 53, 1077, 1082 (1931).
- 2) K. J. Kolonko, R. H. Shapiro, R. M. Barkley, and R. E. Sievers, J. Org. Chem., 44, 3769 (1979).
- 3) K. Ishizaki, N. Shinriki, A. Ikehata, and T. Ueda, Chem. Pharm. Bull., $\underline{29}$, 868 (1981).
- 4) $\underline{2a}$: mp 153-155 °C; 1 H NMR 6 H 5.47 (d, J=8 Hz, 1H), 7.56 (d, J=8 Hz, 1H), 8.95 (s, 1H), and 11.70 (br.s, 1H); 13 C NMR δ_{C} 75.8 (d), 154.2 (s), 158.9 (d), and 171.1 (s); MS (70 eV) m/z 144 (M^+); Found m/z 144.0175. Calcd for $C_4H_4N_2O_4$: M, 144.0171. <u>2b</u>: mp 182-184 °C; 1 H NMR 6 H 1.67 (s, 3H), 7.30 (s, 1H), 8.94 (s, 1H), and 11.80 (br.s, 1H); 13 C NMR 6 C $^{20.4}$ (q), 84.4 (s), 153.8 (s), 158.7 (d), and 173.1 (s); MS (70 eV) m/z 158 (M $^{+}$); Found m/z 158.0343. Calcd for $C_5H_6N_2O_4$: M, 158.0328. $\underline{2c}$: mp 139-143 °C; 1 H NMR δ_H 2.62 (s, 3H), 5.61 (d, J=8 Hz, 1H), 7.53 (d, J=8 Hz, 1H), and 11.65 (br.s, 1H); 13 C NMR $δ_C$ 24.7 (q), 77.5 (d), 153.4 (s), 168.7 (s), and 170.2 (s); MS (70 eV) m/z 158 (M^+); Found m/z 158.0298. Calcd for $C_5H_6N_2O_4$: M, 158.0328. $\underline{2d}$; mp 179-182 $^{\circ}C_{;;}$ ^{1}H NMR δ_H 1.68 (s, 3H), 2.39 (s, 3H), 7.18 (s, 1H), and 11.63 (br.s, 1H); ^{13}C NMR (acetone-d₆) $^{\delta}$ C 22.2 (q), 26.2 (q), 87.6 (s), 153.5 (s), 170.2 (s), and 172.3 (s); MS (70 eV) m/z 172 (M⁺); Found m/z 172.0478. Calcd for $C_6H_8N_2O_4$: M, 172.0484. <u>2e</u>: mp 142-146 °C; ¹H NMR δ_{H} 2.92 (s, 3H), 5.54 (s, 1H), 7.60 (br.s, 1H), and 9.01 (s, 1H); 13 C NMR 6 C 24.4 (q), 75.2 (d), 158.9 (d), 159.4 (s), and 169.8 (s); MS (70 eV) m/z 158 (M⁺); Found m/z 158.0301. Calcd for 6 C 16 N 2 O 4 : M, 158.0328. All the NMR spectra were measured in DMSO-d $_6$ solutions, otherwise stated.
- 5) E. B. Henson, P. M. Gallop, and P. V. Hauschka, Tetrahedron, <u>37</u>, 2561 (1981).
- 6) Crystal data for $\underline{2d}$: $C_6H_8N_2O_4$, triclinic, a=8.425 (9), b=12.042 (9), c=8.419 (4) A, space group P_1 , α =106.52 (5)°, β =96.72 (7)°, γ =106.61 (7)°, Z=4, 2079 unique reflections, D_c =1.49 g cm⁻¹. Intensities were measured on a Rigaku AFC-5 diffractmeter with Mo-K $_{\alpha}$ radiation. The structure was solved by direct method (MULTAN 78) and refined by block diagonal least-squares calculations to R=0.088.

(Received January 25, 1989)